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SUMMARY

Two basic approaches have evolved to atilize measurements of radiance (i.c. thermal or scattered solar radi-
ation} by satellite-borne instruments in data assimilation systems: radiances {raw or cloud-corrected} may be
assimilated directly, or they may be pre-processed {o refrieve geophysical parameters for subsequent assimilation.
The retrieval process is often ill-posed, and therefore requires the use of prior information fo constrain the solu-
tion, For example, temperature and humidity profiles retrieved using radiances from nadir-viewing infrared and
microwave sounders often incorporate prior information in the form of climatology or forecasts. The use of prior
information presents difficulties when assimilating retrievals. Here we present methods to remove prior informa-
tion from retrievals in order to achieve a more consistent assimilation of the data. In addition, these methods can
be used as a data compression device, which can reduce the amount of computation required by some analysis
systems compared with radiance assimilation. The methods are implemented and compared in a one-dimensional
assimilation system using simulated data from corrent and future infrared-temperature profiling instruments.

Keyworns: Data assinilation Retrieval techniques  Satellite data

I. INTRODUCTION

In operational data assimilation systems (DASs), satellite data and conventional
meteorological data are combined with forecasts from a numerical model to produce a
global, physically consistent estimate of the atmospheric state. For many years, the pri-
mary purpose of data assimilation has been to provide initial conditions for numerical
weather prediction. More recently, data assimilation has been recognized as an important
tool for climate and earth system studies (e.g. Bengtsson and Shukla 1988). Several centres
are currently engaged in the preparation of multi-year assimilated data sets produced with
a single, consistent DAS (Schubert et al. 1993; Gibson ef al. 1994, Kalnay et al. 1993).

In this paper, we focus on methods to assimilate temperature information from
nadir-viewing satellite-borne instruments that measure radiances (1.e. thermal or scat-
tered/reflected radiation from earth) in different spectral bands. Although this represents
only a single data type, the concepts that will be developed are applicable to the assimi-
lation of other data types such as precipitation, precipitable water vapour, or wind speed
mformation derived from remote-sensing instruments.

Two basic approaches have been used to incorporate measurements from remote-
sounding instruments in DASs. The more traditional approach 1s to assimilate geophysical
products retrieved from radiances. In this approach, radiances from an individual sounding
are processed off-line to produce a set of geophysical parameters, such as 1D profiles of
temperature or humidity, that are used in a DAS. The retrieval error covariance is required
for retrieval assimilation and is usually statistically derived. Retrieval errors are often
assumed to be horizontally isotropic, stationary, and uncorrelated with forecast errors. In
many cases, some or all of these assumptions are incorrect, as discussed by Daley (1993)
and as shown by Sullivan et al. (1993). In particular, retrieval errors are often significantly

correlated with forecast errors. This correlation results in part from the fact that the retrieval
is a nonlinear estimation process that is often ill-posed and therefore requires the use of prior
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information. The errors of the prior information incorporated into the retrieval are likely
to be correlated with forecast errors, For example, in an interactive system, forecasts are
used as prior information for the retrievals (e.g. Susskind and Pfaendtner 1989; Goldberg
et al. 1993; Eyre et al. 1993). Regression, pattern recognition (e.g. Chédin et al. 1985), and
neural net (e.g. Escobar-Munoz ef al. 1993) retrievals also contain prior information in the
form of an ensemble of profiles used to derive statistical relationships in the algorithms.

The second approach for utilizing remotely sensed data in a DAS involves directly
assimilating radiances. This approach requires the specification of a radiance error co-
variance. The assumptions that observation errors are state-independent, stationary, and
uncorrelated with the forecast are more justified for radiances than for retrievals (e.g. Eyre
et al. 1993). Preprocessing of the radiances, such as removing the effects of clouds, will
create non-stationary radiance errors. In this situation, a state-dependent radiance error
covariance may be used (Derber and Wu 1996). Radiance assimilation is computationally
feasible with current instruments and analysis schemes. However, new approaches may
be necessary to make use of the full information content of future high-spectral-resolution
sounding instruments in some assimilation systems.

In this paper methods are presented to remove prior information from retrievals by
the partial eigen-decomposition (PED) or partial singular-value decomposition of differ-
ent retrieval operators, Coefficients of eigenvectors or singular-vectors are assimilated as a
new data type. Coefficients that are not well determined by the radiances may be truncated
with no significant loss of information content in the DAS. This compact truncated-mode
representation of the information content in radiances may result in a significant reduction
in the amount of computation required by a statistical analysis system, such as the Physical-
space Statistical Analysis System (PSAS) under development at the NASA/Goddard Data
Assimilation Office (da Silva et al. 1995; Guo and da Silva 1993). Similar approaches
involving singular-value decomposition (SVD) and eigen-decomposition of retrieval op-
erators have been used for many years in 1D retrieval algorithms (e.g. Twomey 1974;
Smith and Woolf 1976; Thompson 1992). However, this type of approach has not been
previously used, to our knowledge, in a data assimilation context.

Following an outline of the notation used in the remainder of the paper, methods
for assimilating remotely sensed data are briefly reviewed. The specific case of radiance
assimilation is described in section 4. In section 5 we provide a description of physical-
space retrieval assimilation. This forms a foundation for the development of phase-space
retrieval assimilation in section 6. In section 7 we compare data assimilation methods in a
1D DAS using simulated data from current and advanced infrared-temperature sounding
instruments. Concluding remarks and future plans appear in section 8.

2. NoOTATION

Before proceeding, we briefly outline the notation that will be used. Different nota-
tions have evolved in data assimilation and retrieval literature. For example, K is used in
data assimilation literature to mean the Kalman gain matrix (e.g. Daley 1991). In retrieval
literature, X 1s commonly used to represent the Jacobian of the radiative-transfer equation
(e.g. Rodgers 1976). Here we have attempted to follow the notation of Rodgers (1990)
wherever possible, in combination with notations used in data assimilation literature. We
have also introduced some less conventional notations. The following are symbols adopted
for general variables:
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state variable

CITOr

forecast-error covariance

observation-error covariance

general observation operator mapping state variable
to the observation space

linearized version of the observation operator
interpolation operator that maps state variables on
the analysis grid to observation locations

TR g

‘e

The following symbols will be used as subscripts and superscripts for the above quantities:

transpose of a matrix
observed

truth

forecast

analysis

retrieval prior information
grid

L S al - I

The following symbols represent different types of observations and may alsc appear as
superscripts or subscripts (in italic):

¥  radiance
z  physical-space retrieval
& phase-space retrieval

For example, w* denotes the true state, w' denotes the forecast state, € = w' — w' denotes
the forecast error, and P' = (€ (€)71) is the forecast-error covariance.

3. STATISTICAL ANALYSIS

The objective of statistical interpolation is to produce an optimal estimate of the
atmospheric state, given a set of observations and a first guess—usuoally in the form of a
short-term forecast. In the variational framework (e.g. Lorenc 1986; Talagrand 1988), this
can be accomplished by minimizing the likelthood functional

J(w) = (w - wf)T(Pf)*l (w - wf) 4 (w“ - h(w))rr(R“)“l (w“ - h(w)), (1)

where w € " is a vector of length n, representing the 3D atmospheric state, w' € R is
the forecast, w° € ;i is the observation vector of length n,, and h(w) 1s the observation
operator that maps the 3D atmospheric state to the observation space. The first term on
the right-hand side (rh.s.) of (1) is weighted by the inverse of the forecast-error covari-
ance Pf € ™ x R, and the second term is weighted by the inverse of the observation
error covariance R°® € i x 3", Provided these covariances are specified correctly, the
analysis state obtained by minimizing J{w) is the mode of the conditional probability den-
sity function p(w|w' | ] y) (Jazwinski 1970} and is derived from a maximum-likelihood
principle assuming that forecast and observation errors are unbiased, normally distributed,
and uncorrelated with each other. Algorithms for the minimization of (1) have been de-
scribed in Navon and Legler (1987) and implemented in global data assimilation systems
by Courtier er al. (1993) and Parrish and Derber (1992). Next we outline the numerical
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algorithm incorporated in the PSAS, as it is important to concepts developed in subsequent
sections.

The observation operator h(w) is in general nonlinear. Therefore the minimum of
J(w}) can be obtained by a quasi-Newton iteration of the form

Wi =w' + PH' (HPTH + R°)™ [w® —h(w;) + Hy(w; — w))]
=w' + (HI(R)'H, + (P)™) ™ HI (R [w° — h(w,) + H;(w; — wH)] ,

(2)
where
=5 . 3
The analysis vector, w, that minimizes J{w) is given by
w = lim w;. (4)

i =0

In a PSAS, a n, x n, system of equations is first solved at observation locations for
the vector x; € IR"™ using a conjugate gradient algorithm (da Silva et al. 1995; Guo and
da Silva 1993), i.e.

(HP'H; + R") x; = w° — h(w;) + H; (w; — w!) . 5)

The first term on the left-hand side of (5) will be referred to as the innovation covariance.
The state at iteration (i + 1) is updated by an additional matrix-vector multiplication, i.e.

Wi =W + P H'x, (6)

The computation required for the solution of the linear system (5) is approximately
O(Ngn?), where N, is the number of iterations of the conjugate gradient algorithm.
N, depends upon the conditioning of the innovation covariance. The matrix-vector mul-
tiplication in (6} requires O(n,n,,) floating-point operations. The total operation count to
solve (5) and (6) is approximately O[N,(N n? + ngh, )], where N, 18 the number of outer
(quasi-Newton) iterations performed. In the current PSAS implementation, using conven-
tional data only, N, =~ 10 and n, = 10n,. Therefore approximately the same amount of
computation is required for solving (5) as (6).

4. ASSIMILATION OF RADIANCES

The assimilation of cloud-cleared radiances using a variational approach is operational
at both the US National Centers for Environmental Prediction (Derber and Wu 1996)
and the European Centre for Medium-Range Weather Forecasts {(Andersson et al. 1994;
Courtier et al. 1998; Rabier et al. 1998; Andersson ef al. 1998). Assimilation of radiances
mvolves utihzing radiance measurements y as the observation vector w° and specifying
the radiance error covariance R” as the observation error covariance R in (1). In addition,
an observation operator h must be specified that maps state variables to the radiances.

The observed radiance from a remote-sensing instrument can be expressed by

y = f(z', b) + 8f (@', b', b'") 4 gneasurement, (7)

(Rodgers, personal communication): z' is the true atmospheric state at the observation
location; f 15 an approximate radiative transfer or empirical model relating the true atmos-
pheric state z' to radiance space using a vector of true parameters, b', such as spectral line
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data and other calibration parameters; §f is the difference between the true observation
operator and the approximate model f (e.g. resulting from discretization errors and er-
rors in the physics of the approximate radiative-transfer model); b"' denotes parameters
not included in £, and ™™™ is the measurement error which includes detector noise,
calibration errors, and any errors introduced by pre-processing of the data including cloud
clearing, adjustment to nadir-viewing conditions, etc. The true state at the observation
location, Z', is given by

t buvwed .Sl’wt, (8)

where  is an interpolation operator relating a state on the analysis grid to the observation
location. The radiative-transfer model is often linearized using a Taylor series expanded
about an estimate of the state. For an iterative analysis or retrieval such as in (2), the
linearization state is the state estimate at iteration i, denoted Z', i.e.

fEh=f@)+Fi@ —2)+0@E ~2) + ...
= f(Z)+ Fi@ ~2)+ (F —~ F)Z' ~2) + O —2)* + ...

= f(Z) + Fl(z' — 2') + ™", | ()
where "y
pie , (10)
0Z |,y

and €™ will be referred to as the linearization error. The linearization error clearly
depends upon the difference between the ith estimate of the state and the true state, and is
likely to be correlated within certain spectral intervals.

To assimilate radiances correctly, an appropriate radiance error covariance R’ =
(€ (€’)T} must be specified. The total radiance error € is obtained by combining (7)-
(10), 1.e.

, - . - re af .

E"} = y —_ (f(zi, b) + F;(zt L Z!)) - Emaﬂ:surt,mﬂni __I_ ﬂ(bt . b) + Sf + e_lmear, (11)
where b are the parameters used in the observation operator. Although in some instances it
may be possible to model €, practical implementations will be likely to rely on statistical
modelling from innovation sequences, or some form of on-line parameter estimation such
as discussed in Dee (1995). Radiative-transfer parameter errors are usually associated
with systematic errors (i.e. state-dependent errors that will be spatially correlated) as
discussed by Eyre ef al. (1993). The systematic errors may be corrected for in part by

utilizing independent observations such as radiosondes, and/or forecasts or analyses that
are assumed to be unbiased. This has been done, for example, with radiances from the
TIROS* Operation Vertical Sounder (TOVS) (e.g. Eyre 1992; Susskind and Pfaendtner
1989). However, it is unlikely that the systematic errors can be completely eliminated. As
a detailed treatment of systematic errors is beyond the scope of this paper, we treat radiative-
transfer modelling errors as random and assume both background and observation errors
to be unbiased, 1.e. (€) = 0.

5. ASSIMILATION OF PHYSICAL-SPACE RETRIEVALS

Remotely sensed data have been traditionally assimilated in the form of physical-
space retrievals. In this approach, radiances are used to produce familiar data types such as

* Television Infra-Red Observation Satellite.



1674 J. JOINER and A. M. da SILVA

temperature or humidity profiles that are used in a DAS. Specifying the retrieval z € R
as the observation vector w® in (1), the observation operator h is a linear interpolation
operator so that the iterated form of (2) reduces to

W =w + (P'97) ($P ST+ RY) ™ (z — $w), (12)

where R = (€ (€°)") is the retrieval error covariance, and § € %™ x 9" is the interpola-
tion operator used above. A more general form of (12) that includes the retrieval-forecast-
error cross-covariance, denoted by X = (€ (€))7}, is given by

w=w 4+ (P97 - XT) (JP ST+ R — $XT - X9T) " z—9wh).  (13)

Operational implementations of retrieval assimilation often use retrieval error covariances
that are statistically-derived, and assumed to be stationary and horizontally isotropic. In
addition, the retrieval-forecast-error cross-covariance matrix X is often neglected as a
result of the difficulty associated with modelling it and, more importantly, the potential
for creating numerical instability as discussed by Eyre eral. (1993).

The retrieval of geophysical parameters 2z from radiance observations y is a nonlinear
(in general) estimation process that can be represented by

z=D(y, b, Z) =D{f[z', b'] + €, 77, (14

where ZP is a prior estimate of the state used in the retrieval algorithm, f is the radiative-
transter model encountered in the previous section, and € is the radiance error given by

(11). Because f is nonlinear, (14) can linearized about an estimate of the state such as the
prior estimate z°, i.e.

z- 2" =[D(f(z°, b}, b,2") —2°|+ D, [F, (¢ - 2°) + €], (15)
(Rodgers 1990) where
D, = b : (16)
ay pumg P

The first bracketed term on the r.h.s. of (15) is called the fransfer function bias. For most
physical retrievals, the algorithm returns the prior estimate when presented with noiseless
data consistent with it (i.e. with y = £(zF, b)). In such cases transfer function bias is
insignificant and (15) reduces to

z—2" =D, [y - f(2")] (17)
(Eyre 1987). Then (15) or (17) can be rearranged to give the retrieval error €, i.e.
€=z2—2=(1~A)&+D,€ (18)

(¢.g. Eyre 1987, Rodgers 1990) where A == D, F,, is called the averaging kernel (Backus and
Gilbert 1970), and €° == 2P — z' is the prior-estimate error. The first term on the r.h.s. of (18)
may be thought of as a smoothing error, which results from the use of prior information in
components of the state space that the observing system is not able to measure accurately.
The second term results from the propagation of radiance errors including all terms in (11).
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(a) Assimilation of interactive retrievals

In the specific case of interactive retrievals, a forecast from a DAS interpolated to the
observation location is used as the prior estimate (i.e. z° = $w'). Then, vsing (18) we can
derive an expression for the retrieval-forecast-error cross-covariance, i.e.

X = (()T) = (I — A) ${€()T) = I — A) IP, (19)

where we have assumed that {€’ (€)T) = 0. Substitution of (19) into (13) gives
| ~1
wi=w' + P (A9 [A9) P A9+ D,RD]| (2 9w, (20)

where R? is the radiance observation error covariance encountered in section 4. This
result was first derived by Ménard (personal communication) and shows that (13) can be
simplified to eliminate terms involving X. Then, (20) 1s of the same form as (12), where
the operator A$ replaces the interpolation operator $, and the retrieval error covariance
is replaced by the propagation of radiance errors € to physical-space (DyRFDf). For any
retrieval requiring the use of prior information, AJ is a stronger means of smoothing than
the interpolation operator $. It can be shown that this additional smoothing causes the
innovation covariance to become singular when A # L. This conditioning problem, which
is not unique to a PSAS, has been discussed by Eyre et al. (1993) and Purser (1990),
Eyre et al. (1993) have adapted an approach given by Lorenc et al. (1986), which involves
mapping 1D retrievals into a reduced space and then modifying both the retrievals and
retrieval error variances, in order to overcome the numerical instability problem and to
produce a more consistent assimilation of 1D retrievals for the case in which A # 1. We
discuss the trivial case of A = 1 below.

(b) Assimilation of retrievals with no prior information

If little or no prior information is used in the retrieval, then by definition A =~ I and
therefore X = (I — A)${€"(&")T) ~ 0. In this case the retrieval may be consistently assim-
ilated by substituting R* =D, R’ D;f into (12). This approach has been used to assimilate
constituent data from the Cryvogemc Limb Array Etalon Spectrometer. In the next sec-
tion, we describe methods to filter or remove prior information from retrievals that have
non-trivial averaging kernels (A # I) so that X = 0 and (12) can be used.

6. ASSIMILATION OF PHASE-SPACE RETRIEVALS

Consider a new data type a derived from retrievals by a linear transformation, e.g.
a=Ulz (21)

where Up € ™ x M (n, < n,) reduces the dimension of the retrieval vector. Because
the cost of the conjugate gradient solver in a PSAS approximately scales as the square of
the number of observations, a lnear transformation that significantly reduces the size of
the observation vector will reduce the cost of the analysis. The statistical analysis equation
in terms of the new data type a becomes

w'=w + P TU, (UTIPTF U + R (@ — ULSwy)
=w +K* (a—U,Iws) , (22)
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where
R* = {"(¢")") = ULR*U,, (23)

is the error covariance of the new data type e, and € = e — U%z'. We have neglected the
retrieval-forecast-error cross-covariance X. In the next two sections, we present several
ways to design a compact linear operator Uy to ensure that X = 0.

(@) Assimilation of null-space filtered (NSF) retrievals

(1) Method 1. In order to clarify the relationship between the retrieval, the true state, and
the prior estimate, (18) can be rearranged to give

2=Az + (1 - A)z’ + D, (24)

(Rodgers, personal communication), The 1D retrieval z € )" is partially made up of a
smoothed version of the true atmospheric state (Az'). The details of the state that cannot
be resolved by the instrument are supplied by prior information via (I — A)z?, with added
error Dy € resulting from the propagation of radiance errors. In order to simplify the error
characterization for data assimilation, we seek a linear transformation of the retrieval that
eliminates (or renders negligibly small) the contribution from the prior estimate z°, One

method to accomplish this is to project the retrieval z onto the null-space of the operator
I — A. Specifically, consider the SVD

where U, and V, are matrices of left and right singular vectors of I — A (the subscript 1
denotes method 1), and S; is a diagonal matrix of singular values sorted in descending
order. Let U, be expressed as the concatenation of leading and trailing singular vectors,
Uy and Uyy, respectively, i.e. Us = (Uy |Usp). We take Upp € ™ x ™ to correspond o
neghgible singular values S;r € " x W™, so that

Ui — AyzP =81 (Vi) 2° 2 0. (26)

We will refer to the subspace spanned by the leading modes, Uy, as the null- space of the
observations. Although not strictly a null-space in the mathematical sense, the observation
null-space can be thought of as components of the state space that the instrument cannot
measure accurately. A new data type e, = (Uyy)'z has a corresponding error covariance
R with negligible contribution from the prior information, i.e. rearranging (23), (24),
and (26)

R" = (Uip)"R*Usr &~ (Uyp) "D,R? D_:fUrr- | (27)
The data type a;, a phase-space retrieval, is consistently assimilated using Ug = Uy in
(22).

(1) Method 2. Another approach to eliminate prior information from retrievals involves
projecting the retrieval onto the null-space of the smoothing error (A ~ I)€® from (18).
The smoothing error covariance, denoted R*, and its eigen-decomposition are given by

R°=(A-DP(A-D" =0, oU7, (28)

where & is a diagonal matrix of real, non-negative eigenvalues. U, can be expressed
as U, == [Uy | Uar], where Uy, and U,y are leading and trailing modes (eigenvalues are
sorted in descending order). We now show that a new data type e, = (U,7) 2 has an error
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€2 = a» — (Uy)’ 2" with negligible contribution from the prior estimate. Using (18), (23),
and (28), R*? is given by

R* = (Upy)"U;@U; Uyr + (Uzp) 'DyRPD ] Upp
= Or + (Uyr) 'D,R'D Uy, (29)

where ®r is a diagonal matrix of trailing eigenvalues. Assuming the trailing eigenvalues
to be small, i.e. ||®r|| < [JULDyRYD Uy, (29) reduces to

R*? >~ (Uyp) 'D,R’D [ Uzr = (Uyr) ' R¥Upy. (30)

Again, the data type @, is a phase-space retrieval that can be assimilated using (22} with
Ug = Uz

(iii) Implementation issues. The above methods can be thought of as observation null-
space filters (NSFs). NSF retrieval assimilation has several advantages over physical-
space retrieval assimilation. In addition to removing priot information from the retrieval,
eliminating modes of the decomposition results in data compression that should reduce the
amount of computation required in a PSAS. If the state dependence of averaging-kernel
A is small, a constant or small set of fixed trailing eigenvectors or singular vectors may be
defined prior to assimilation, further reducing computation in the DAS. Another potential
advantage is that radiances are not required so thatimplementation may be simplified, e.g. if
the radiances are not available. These methods do, however, optimally require knowledge
about how the retrieval is performed; in some cases this information may not be generally
available. Finally, when the retrieval is severely constrained (i.e. when a significant amount
of prior information is contained in the sub-space spanned by trailing modes Uy), these
methods may not be as accurate as radiance assimilation. This 1s because the nuli-space
filter may not completely eliminate all of the prior information, or it may remove some
of the useful information contained in the radiances. A more optimal approach requiring
radiances is given in the following subsection.

(b) Assimilation of partial eigen-decomposition (PED) retrievals

(i} PED retrieval. In the previous subsection, operators were designed to filter prior
information from physical-space retrievals to yield a modified retrieval in phase-space. We
now define a phase-space retricval process that completely eliminates prior information.
Recall that a retrieval can be represented as a nonlinear estimation process D(f, zF...) with
associated operators D, == dD/dy and F, = 9f/dz. For convenience, we will consider the

case of D formulated as an unconstrained weighted least-squares retrieval. D is linearized
about a prior estimate z?, 1.e.

z =12+ [F, R")'F]"'F (R [y — £z b)]. (31)

The unconstrained solution is obtained by setting the prior-estimate error equal to mfinity
(inverse of the prior-estimate error covariance equal to zero) in the 1D version of (2). Then,
D, is given by

D, = (FI(R)"'F,) ' FI(R") ", (32)
and A = D,F, = L. Substituting (32) into (18), the retrieval error covariance,
R? = {€°(€)1), is given by

R® = D,R°D! = (FT(R")"'F,)”’ (33)
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and has no contribution from the prior estimate. Evaluating (31)~(33) is straightforward
when F_ (R?)™'F, is nonsingular. However, itis often the case that [FT (R”)~'F, ] is singular
or nearly singular, so that either the solution to (31)~(33) does not exist, or it exists but the
propagation of radiance errors produces large errors in some components of the retrieval.

Alternatively, we can formulate an unconstrained phase-space retrieval in terms of
coefficients of the well-determined eigenvectors of [F, (RY)™'F,] (i.e. coefficients with

small errors). Consider the eigen-decomposition of [FT(R*)~'F,], i.e.
[(F)'(R)'F.] = (R = U,AUY, (34)

where eigenvalues are sorted in descending order. This decomposition is known as the
Hotelling, discrete Karhunen—Loeve, eigenvector, or principal component transform (Ho-
telling 1933; Karhunen 1947; Loeve 1948). As before, the columns of U; (i.e. the eigen-
vectors of (R*)~" or F] (R”)"'F,) can be written as Uy = [Usy | Usy], where Uy, and Usy
are the leading and trailing eigenvectors or modes and Uy € R" x M™, Eigenvectors in
the null-space of (R*)~! will have zero eigenvalues, and modes that are not well-determined
by the measurements (i.e. the trailing modes) will have small eigenvalues or large errors.
A new data type o, = Uj; z can be retrieved by linearizing the operators about an initial
state 2P, 1.e.

a; = Uy 2" + Uy UsATUTFT Ry — £(2°, ). (35)

Because Uy, Us is the rectangular matrix [I, | 0], it follows that

UL UAT'UT = A0 (36)

Substituting (36) in (35) gives
a; = Uy 22 + A UL FIRY) My — £, b)). (37)

Then, substituting Dy given by
D, =A;'U; FL(R")™ (38)

into (18) and rearranging, we can express R*? as
R% = A; UL FTR)Y IR [(R)F,UL(ATHT = A, (39)

so that R* has no contribution from the prior estimate. The prior estimate is used only as
a linearization point. An equivalent form of the PED solution may be derived by the SVD
of (R?)717F ,ie. (R)'2F, = U;DV], where the singular values, D, are the square roots
of the eigenvalues in A, and the columns of V3 are the same as the columns of Us in the
above equations (Rodgers, personal communication). The PED transformation minimizes
the truncation error (Koschman 1954) which is defined as the mean-square difference
between the exact and truncated-mode solution. The error introduced by truncating the
last n, — n, modes, denoted €™, is given by

€™ = 3" Ay (40)

As before, the data type a; can be assimilated in phase-space using (22) with Ug = Uy,
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(i) Implementation issues. The PED transformation operator, Uy, is optimal in terms of
packing the information content of the radiances into leading modes. This optimal transfor-
mation is state-dependent as a result of the nonlinear radiative-transfer operator. In order
to simplify the implementation of the PED retrieval assimilation, a fixed transformation
Uyr (that does not necessarily diagonalize the retrieval error covariance} may be used
in place of the optimal state-dependent transformation Us.. The truncation error of the
suboptimal fixed PED transformation will be slightly larger than that of the optimal PED
transformation for a given number of truncated modes. The use of a fixed transformation
would more easily facilitate some form of spatial averaging of data prior to assimilation
(i.e. super-obbing as described by Lorenc (1981)) that reduces the amount of computation
required by a DAS such as a PSAS. If the radiative-transfer model is nearly linear, the
off-diagonal elements of the retrieval error covariance may be negligible, so that one can
find a fixed transformation that approximately diagonalizes the retrieval error covariance.

We can also project the unconstrained retrieval onto modes of the partial eigen-
decomposition of other operators that include the forecast-error covariance, such as the
averaging kernel or the normalized precision matrix discussed by Huang and Purser (1996).
These operators, which are normalized with respect to the forecast, may pack the informa-
tion more efficiently in terms of its impact on the analysis. It will also be easier to interpret
the eigenvalues of these operators, especially when state variables are of mixed units.

(¢) Implementation issues common to NSF and PED retrievals

(i) Truncation criteria. In the case of either NSF or PED retrieval assimilation, the
number of modes to preserve and assimilate must be determined such that the truncation
error is acceptable. In addition, for NSF retrievals it should be verified that the amount
of prior information in a given mode is negligible, and that useful information is not
being discarded. It is possible to quantitatively assess the impact of a particular mode
on a DAS, and the effect on the DAS of truncating a given number of modes. There are
several measures of information content and data impact that have been used previously
in remote-sensing applications (see e.g. Eyre 1990; Huang and Purser 1996; Prunet et
al. 1998). We have used here two different methods of examining data impact for the PED
retrieval assimilation example. On a mode-by-mode basis, one measure of data impact 1s
the ratio of the analysis error variance to the forecast-error variance. This quantity will
be scalar invariant, meaning that it is a quantity independent of the units or coordinates
used, as defined by Purser and Huang (1993). The forecast-error variance for mode £, pg‘;’
(a scalar), is given by

pi=u, 9P 9", (41)
where n, is the £th eigenvector. Similarly, the analysis error for mode £, pj, 1s given by
pi=u, $P*$ u,. (42)

If the ratio p%/p;} is close to unity, the assimilation of the data type does not significantly
reduce the analysis error for that mode, and therefore may be truncated without significant
degradation to the DAS. For PED retrievals, substituting P* = (I — K*H)P*, where K” is
given by (22) and H is given by UL 4, into (42), it can be shown that

pgfpi’g =1 (ﬂgﬁpf-g‘qlllg e AE]')_qu.@PfﬁTﬂg
=1—{py+ AN P, =0+ pr A (43)

Alternatively, another quantity to examine is the ratio of the vertically averaged anai-
ysis error variance, trace[P?], to the vertically averaged forecast-error variance, trace[Pf],
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for a given number of included modes. This ratio will indicate the reduction in total analy-
sis error variance resulting from the assimilation of a particular mode or set of modes. This
measure has the disadvantage that it is not invariant. However, it provides a convenient
way to express data impact for the particular example used below.

(1) Linearization Issues. The new data type e and corresponding observation operator
Ur in (22) are obtained in the above examples by linearizing about a prior estimate.
For the PED retrieval, we may use either a forecast, a 1D retrieval, or a 3D analysis as
a linearization point. Linearization error may be significant when the radiative-transfer
operator 1s highly nonlinear (e.g. in the case of humidity) and when a forecast is used as
the linearization point. The linearization error may be significantly reduced by performing
a 1D retrieval prior to the eigen-decomposition. Linearizing in 1D, as in NSF retrieval

assimilation, may be far less costly than linearizing in 3D as in some 1mplementatmm of
radiance assimilation.

7. COMPARISON OF DATA ASSIMILATION METHODS USING A 1D SIMULATION

(@) Experimental design

The objective of this experiment is to compare assimilation methods in a limited 1D
DAS using a Monte Carlo approach. For the experiment, the true state (truth), the analysed
state (analysis), and the forecast state (the prior estimate) are an ensemble of temperature
(geopotential height or thickness) profiles. Radiances from infrared-temperature sound-
ing instruments are simulated, and the data are assimilated in 1D using several different
methods to produce an analysis (i.e. horizontal correlations are ignored). The methods
included are 1D radiance assimilation (equivalent to a 1D minimum variance interactive
retrieval) and 1D assimilation of PED and NSF retrievals retaining different numbers of
modes. The PED retrievals use the final 1D minimum variance retrieval as a linearization
point, and the null-space filtering is also performed on the final 1D minimum variance
retrieval. This experiment provides a comparison between data assimilation methods in
a controlled environment, and also provides a rough comparison of the computation that
will be required by a PSAS for the different methods in a full 3D implementation. Similar
results should also be obtained in a 3D system provided that the linearization error is small
in the 1D case.

Figure 1 shows three model-generated temperature profiles that provide a reasonable
range of variability. A comparison of the different data assimilation methods is performed
separately for the two extreme profiles ¢high- and low-latitude profiles) to show how the
magnitude of the errors varies with state. The truth in each case consists of 1000 identical
profiles. The forecast is produced by perturbing the true state according to the statistics
of the forecast-error covariance. The forecast-error covariance (P') used here is that for
a 6-hour forecast from the 18-level (0.4, 1, 2, 5, 10, 30, 50, 70, 100, 150, 200, 250, 300,
400, 500, 700, 850, and 1000 mb) Goddard Earth Observing System (GEOS) 1.0 general
circulation model. P* was estimated from innovation (observed minus forecast) height time
sertes over North America (da Silva ef al. 1996).

Radiances (brightness temperatures) are simulated from the truth using a fast radiative-
transfer algorithm with parametrizations similar to those used by Susskind ez al. (1983).
Errors are added to the channel brightness temperatures; they have a normal distribution
and there is no correlation between spectral elements {channels). The assumed brightness-
temperature error covariance, R”, 15 taken to be a diagonal matrix (channel-independent
errors) where the elements are set equal to the specified errors, but with the addition of
(0.05 K to account for linearization error.
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Figure I. Model-generated temperature profiles used in the simulation.

For simplicity, we simulated clear-sky night-time conditions (i.e. no reflected solar
radiation) and nadir-viewing conditions. The water vapour profile and surface parameters
are assumed to be known; when these parameters are estimated, retrieval errors will in
general be larger than those shown here. Another simplifying assumption is the exclu-
sion of channel-correlated errors here. Channel-correlated errors will occur as a result of
radiative-transfer modelling errors, and will ultimately limit the information content of the
measurements. Although a number of simplifying assumptions are made here, a meaning-
ful comparison between different assimilation approaches can be obtained because they
are the same assumptions in all cases.

(b) Instrument description

We simulated radiances for two different infrared sounders: the Atmospheric Infrared
Sounder (AIRS) and the High-resolution Infrared Sounder 2 (HIRS2). AIRS will fly on the
NASA Earth Observing System afternoon (EOS-PM) platform in the year 2000. AIRS is
a high-spectral-resolution grating spectrometer. The resolving power of AIRS, defined as
the ratio of the frequency v of a spectral element fo its full-width half maximum bandwidth
Av, is approximately equal to 1200 over its full spectral range. AIRS has approximately
2600 contiguous spectral elements with some gaps, sampled twice per half width, that
cover wavelength regions from 3.4 to 15.4 um (650 to 2670 cm™"). The spatial resolution
of AIRS is approximately 13 km at nadir in the 705 km orbit of EOS-PM. AIRS will
scan laterally, with satellite zenith angles ranging between :49.5°. The specified single
spot equivalent noise temperature for a given spectral-resolution element is 0.2 K at a
250 K scene for channels v > 750 cm™! and 0.35 K at a 250 K scene for channels at lower
frequencies.

HIRS2 is one of 3 instruments contained in the TOVS package and is described in
detail by Smith ef al. (1979). HIRS2 first flew on TIROS-N launched in 1978 and has now
flown for 20 years on NOAA operational satellites 6~14. HIRS2 has 19 infrared channels
with a resolving power (v/Av) of about 100. HIRS2 has approximately the same spatial
resolution, spatial coverage, and signal-to-noise (per channel) as AIRS.

We have included in the simulation a total of 550 AIRS channels consisting of all
those available between 650 and 742 cm™!, between 2160 and 2270 cm™', and between
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TABLE |, CENTERAL WAVENUMBER Vv

AND SINGLE SPOT BRIGHTNESS TEMPER-

ATURE ERRORS USED IN SIMULATION FOR

HIRS2 cHanNELS AND AIRS cHANNELS
AT THE SAME FREQUENCY,

HIRS v HIRS AIRS
chanpel  cm™! K K

I 6089 2460 0.175
2 6794 0550 0.175
3 689.6 0411 0.175
2! 703.6 G255 0175
3 7145 0174 0.175
6 7323 0200 0175
7 749.6 0168 0.100
I3 21913 0281 0.100
14 22074 0153 0.100
15 22364 0224  0.100
It 2268.1  0.116 0100

2379 and 2407 cm~'. We used a total of 11 HIRS channels covering the first 2 AIRS
wavelength regions (channels 1-7 and 13-16). Table 1 gives the central frequency and
specified radiometric noise equivalent temperature (N EAT) at a 250 K scene for HIRS2
channels. The specified N E AT's are sometimes significantly higher than actual instrument
performance, but do not include contributions to radiance errors from radiative-transfer
modelling errors, calibration errors, pre-processing errors, etc. Here we use the specified
NEAT values as an estimate of the total radiance error as they are comparable with
racdiance error estimates used elsewhere (e.g. Eyre et al. 1993). Table 1 also gives expected
N EAT's for single AIRS channels at the HIRS channel central frequencies. The AIRS
N EAT's used 1n the simulation were 0.1 K for channels v > 738.55 cm™! and 0.175 K at
a 250 K scene for channels at lower frequencies. These are the values used in simulation
studies by the AIRS science team (H. H. Aumann, personal communication). We could
have used all AIRS or HIRS channels and included other state variables (i.e. humidity,
surface temperature and ozone) in the analysis as has been done in previous work (Eyre
1990; Huang and Purser 1996; Prunet ef al. 1998). However, we have chosen this simple
example for demonstration purposes.

Figures 2 and 3 show the Jacobian or channel temperature sensitivities for selected
AIRS and HIRS channels, respectiveiy, using the mudlatitude temperature profile from
above. Each curve represents F, == 3@, /8T as a function of pressure or altitude, where ©,
18 the channel, & the brightness temperamrﬁ and T 1s the atmospheric temperature profile.

(¢) Radiance assimilation: linear error analysis

Figure 4 shows predicted thickness errors (in the layers bounded by the 18 GEOS
levels given above) for radiance assimilation computed using the linear error estimation
theory described above. Also shown are specified forecast errors. The largest impact from
the sounding data is in the stratosphere and lower troposphere, and the impact from AIRS
is significantly greater than that from HIRS2. Figure 5 shows predicted thickness errors
for both the low- and high-latitude cases using AIRS channels to illustrate the state depen-
dence of the retrieval errors. The forecast-error covariance was generated in the northern
hemisphere over land where conventional data is dense. In the southern hemisphere, where
torecast errors are typically larger, the impact of AIRS and HIRS2 data will in general be
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Figure2. Jacobian or channel brightness temperature sensitivities to atmospheric temperature for selected Atmos-
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Figure 6. Leading eigenvectors and eigenvalues of F] (RY)™! F, for AIRS channels and the low-latitude profile
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greater than that shown here. It should also be noted that the impact shown here is for a
single sounding per grid-box. Analysing more soundings per grid box may further reduce
analysis errors. On the other hand, analysis errors will increase (especially m the lowest
level) when water vapour and surface parameters are estimated rather than taken to be the
truth.

(d)

Recall that PED retrieval assimilation involves assimilating the coefficients of the
eigenvectors of ] (R)~'F,. Figures 6 and 7 show the Ieading eigenvectors and eigenvalues

of FT(R”)~'F, for AIRS and HIRS, respectively. The first few modes are very similar for
the two instruments, but the error variances {inverse of the eigenvalues) are significantly
lower for AIRS than for HIRS2. AIRS has a higher effective signal-to-noise ratio, primarily
as a result of the larger number of channels.

We now examine the impact of a particular mode on the GEOS DAS in 1D. The
quantity 1 — p3/p! is plotted as a function of mode £ in Fig. 8. AIRS radiances are shown
to impact significantly on approximately 11 or 12 modes, while HIRS2 radiances impact
on only about 4 or 5. While this type of analysis tells us how many modes the data have
significant impact on, it does not provide any information about the magnitude of the
analysis errors or relative importance of each mode. Figure 9 shows a measure of the
total error reduction, trace(P*Ytrace(P"), plotted as a function of the number of modes
included in the analysis. Approximately 8-10 modes provide most of the AIRS impact,
while approximately 4 modes account for the majority of the HIRS2 impact. Again, the
total impact from AIRS is shown to be significantly greater than that from HIRS2,

PED retrieval assimilation: Monte Carlo experiment
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Figure 10 shows the thickness errors of the Monte Carlo experiment for the AIRS
high-latitade PED retrieval assimilation with &, 9, and 10 modes mcluded. The direct-
radiance assimilation is also shown and is the optimal solution. We allowed three iterations
in the 1D minimum variance retrieval. Further iterations did not significantly improve the
results. The differences between the radiance assimilation and the PED retrieval assimila-
tion are very small. Slight degradation is shown in the upper stratosphere when only 8-10
modes are assimilated, and the degradation increases slightly when the number of retained
modes decreases.

Figure 11 is similar to Fig. 10, but shows results for the low-latitude case. Slightly more
degradation is present when 8-10 modes are retained as compared with the high-latitude
case. This result is expected, on the basis that Fig. 8 indicates more modes are needed
for the low-latitude profile. Again, the difference between the 8-10 mode PED retrieval
assimilation and radiance assimilation is very small. In the stratosphere, we have the
unexpected result of the 8 mode PED assimilation outperforming the radiance assimilation.
This has been attributed to linearization error that is not perfectly accounted for in R”.
As verification, analyses were produced in Monte Carlo mode by linearizing the Jacobian
about the truth, as shown in Fig. 12. The expected results are now obtained, and analysis
errors are now nearly identical to those predicted by linear theory. This example shows
that linearization error can be significant, and if not properly accounted for can degrade
the analysis.

In this simulation, 550 AIRS radiance observations have been compressed into ap-
proximately 10 pieces of information. This would reduce the computation required by the
PSAS conjugate gradient solver by approximately a factor of 55% or 3025 as compared with
radiance assimilation. The data compression for HIRS2 is much smaller (approximately
10 channels to 4 pieces of information). It should be noted that the AIRS instrument, and
instruments with similar spectral resolution such as the Infrared Atmospheric Sounding
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Figure 12. As Fig. 11 when linearization error is eliminated.

Interferometer (IASI), will provide many more than the 10 pieces of information shown
here. We have considered here only temperature sounding and only a limited spectral
region. AIRS and IASI will also provide information about the humidity profile, ozone
profile, surface temperature, surface and cloud spectral emissivity, cloud height, and cloud
fraction, that can potentially be used in a DAS. Tt has also been suggested that including
channels in the 6.7 um water vapour band provides additional information about the tem-
perature profile (Rodgers 1996). We note that to achieve this result, spectroscopic errors
will have to be reduced from their current levels.

{e) NSF retrieval assimilation

Figure 13 shows the trailing modes of (A —I) and R* = (A — DPP(A — DT that are
used in NSF methods 1 and 2, respectively, for AIRS and the low-latitude profile. In this
example, PP is taken to be Pf as would be the case for interactive retrievals. D, is assumed
to be that from a minimum-variance retrieval. These modes, as expected, are similar to
each other and similar to the leading modes of F,(R*)~'F, shown in Fig. 6. Figure 14 is
similar to Fig. 10, but shows the results for the two methods of NSF retrieval assimilation
using different numbers of modes. The difference between these approaches and radiance
assimilation is insignificant, especially when 10 modes are retained. The results of the NSF
and PED analyses are nearly identical even though the PED approach is more optimal from
a theoretical point of view. However, it remains to be seen how well the NSF approach
would perform when less optimal prior information is used in the retrieval. As with PED
retrieval assimilation, the computation required for full 3D PSAS will be reduced using
NSF retrieval assimilation as compared with radiance assimilation, especially for AIRS
and TASI.
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8. CONCLUSIONS AND FUTURE WORK

We have presented the theoretical basis for consistently assimilating remotely sensed
data in the form of PED (partial eigen-decomposition) and NSF (null-space filtered) re-
trievals. In this approach effects of the prior information are reduced or eliminated from
the retrievals, so that the assumption of zero correlation between the retrieval and forecast
errors is justified. In addition, the assimilation methods developed here compress data,
and can reduce the amount of computation needed in some DAS schemes while preserv-
ing essentially all of the information content of radiance measurements. In a 1D PSAS
simulation these techniques produced results nearly identical to radiance assimilation. In
a 3D system there is the potential for a significant reduction in computation, especially for
future high-spectral-resolution instruments. Performing the expensive radiative-transfer
calculations off-line once and for all using the approaches developed here would also
significantly reduce costs when performing paralle] system tests, such as observation sys-
tem experiments and observation system simulation experiments, or when running several
multiple-year re-analyses.

Futute plans include implementation of either (or both) the PED or NSF approaches in
a PSAS using data from TOVS as a prototype for AIRS and IASI. Several implementation
issues remain to be addressed, including whether it is possible to select a fixed or small
subset of transformations in a more nonlinear situation (i.e. when humidity and other
constituents are included). The success of these methods will be evaluated both in terms
of the cost and quality of the analyses. The success of any chosen method will of course
depend upon the ability to remove systematic errors, accurately estimate observation and
background errors, and apply effective quality control to the observations. We also plan to
investigate the application of these methods to the assimilation of retrieved ocean surface
winds, cloud top heights, and precipitation.
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